Sheng Dai

Associate Professor at Zhongnan University of Economics and Law


Sheng Dai | Associate Professor at Zhongnan University of Economics and Law

Google Scholar: 900 Citations; h-index: 11; i10-index: 12.

Articles

  1. Kuosmanen, T. & Dai, S.* 2024. Modeling economies of scope in joint production: Convex regression of input distance function. Journal of Productivity Analysis. Forthcoming.

  2. Yi, J., Dai, S., Cheng, J., & Dai, Y. 2024. Heterogeneous effect of renewable energy policies on resource misallocation: Evidence from Chinese zombie firms. The Energy Journal.

  3. Dai, S., Fang, Y.H., Lee, C.Y. & Kuosmanen, T. 2024. pyStoNED: A Python package for convex regression and frontier estimation. Journal of Statistical Software. Forthcoming.

  4. Yi, J., Dai, S., Li L., & Cheng, J. 2024. How does digital economy development affect renewable energy innovation? Renewable and Sustainable Energy Reviews, 192, 114221.

  5. Liao, Z., Dai, S.*, & Kuosmanen T. 2024. Convex Support Vector Regression. European Journal of Operational Research, 313, 858-870.

  6. Yi, J., Dai, S., Cheng, J., & Liu, K. 2023. How urban sprawl affects local and adjacent ecosystem services? Evidence from a spatial analysis of China. Regional Environmental Change, 23, 139.

  7. Dai, S., Kuosmanen, T., & Zhou, X. 2023. Non-crossing convex quantile regression. Economics Letters, 233, 111396.

  8. Dai, S., Kuosmanen, T. & Zhou, X. 2023. Generalized quantile and expectile properties for shape constrained nonparametric estimation. European Journal of Operational Research, 310, 914-927.

  9. Kuosmanen, T., Tan, Y. & Dai, S. 2023. Performance analysis of English hospitals during the first and second waves of the coronavirus pandemic. Health Care Management Science, 26, 447–460.

  10. Dai, S. 2023. Variable selection in convex quantile regression: L1-norm or L0-norm regularization? European Journal of Operational Research, 305, 338-355.

  11. Yi, J., Dai, S., Cheng, J., Wu, Q. & Liu, K. 2021. Production quota policy in China: Implications for sustainable supply capacity of critical minerals. Resources Policy, 72, 102046.

  12. Dai, S., Zhou, X. & Kuosmanen, T. 2020. Forward-looking assessment of the GHG abatement cost: Application to China. Energy Economics, 88, 104758.

  13. Kuosmanen, T., Zhou, X. & Dai, S. 2020. How much climate policy has cost for OECD countries? World Development, 125, 104681.

  14. Cheng, J., Yi, J., Dai, S. & Xiong, Y. 2019. Can low-carbon city construction facilitate green growth? Evidence from China’s pilot low-carbon city initiative. Journal of Cleaner Production, 231, 1158-1170. [ESI top 1%; Highly cited paper]

  15. Dai, Q., Ye, X., Wei, Y.D., Ning, Y. & Dai, S. 2018. Geography, ethnicity and regional inequality in Guangxi Zhuang autonomous region, China. Applied Spatial Analysis and Policy, 11, 557-580.

  16. Chen, J., Cheng, J. & Dai, S. 2017. Regional eco-innovation in China: An analysis of eco-innovation levels and influencing factors. Journal of Cleaner Production, 153, 1-14.

  17. Cheng, J., Dai, S.* & Ye, X. 2016. Spatiotemporal heterogeneity of industrial pollution in China. China Economic Review, 40, 179-191.

Preprints

  1. Dai, S., Kuosmanen, T., & Liao, Z. 2024. Economic growth of cities: Does resource allocation matter? arXiv:2410.04918.

  2. Liao, Z., Dai, S.*, Lim, E. & Kuosmanen, T. 2024. Overfitting reduction in convex regression. arXiv:2404.09528.

  3. Dai, S., Kuosmanen, N., Kuosmanen, T. & Liesiö, J. 2023. Optimal resource allocation: Convex quantile regression approach. arXiv:2311.06590.

  4. Dai, S., Kuosmanen, T. & Zhou, X. 2023. Can Omitted Carbon Abatement Explain Productivity Stagnation? Available at SSRN: https://ssrn.com/abstract=4489827 or http://dx.doi.org/10.2139/ssrn.4489827.

Technical reports

  1. Kuosmanen, T., Kauria, E., Kantola, S., Dai, S., Virtanen, T., & Kauppi, H. 2024. Liikennejärjestelmän saavutettavuusvaikutukset työmarkkinoilla : Rekisteriaineistojen hyödyntäminen vaikutusarvioinnissa. Prime Minister’s Office of Finland.

  2. Kuosmanen, T., Kuosmanen, N., & Dai, S. 2022. Kohtuullinen muuttuva kustannus sähkön jakeluverkkoyhtiöiden valvontamallissa: Ehdotus tehostamiskannustimen kehittämiseksi 6. ja 7. valvontajaksoilla vuosina 2024-2031. Energiavirasto, Finland.

  3. Dai, S., Kuosmanen, N., Kuusi, T., Kuosmanen, T. (Editor), Liesiö, J., & Maczulskij, T. 2022. Misallocation of labor and capital in Finland’s business sector. Prime Minister’s Office of Finland.

Thesis

  1. Dai, S. 2022. Essays on Convex Regression and Frontier Estimation. Aalto University publication series DOCTORAL THESES, 111/2022.